
2.8 < 3..? Implementing the Strassen Algorithm on GPU

Elijah Baraw (ebaraw), Tanay Bennur (tbennur)

April 2025

1 Summary

We implemented a variant of the Strassen Matrix Multiplication Algorithm on GPU, which computes
C = A ·B in O(n2.807) instead of the O(n3) achieved by standard matrix multiplication algorithms.
We performed extensive memory optimizations and created a custom kernel to improve our imple-
mentation. We tested our implementation against cuBLAS, the proprietary NVIDIA linear algebra
library, and outperformed it on square matrices with dimension ≥ 4096, with a maximum speedup
of 1.24x on matrices with dimension 16384. We tested our implementation on RTX 2080 and V100
GPUs, and found similar speedups for both device types.

2 Background

2.1 Elementary Matrix Multiplication

In the elementary matrix multiplication of C = A · B, each output element of C is computed by
taking the dot product a row of A and a column of B. This has a cost of O(N3).

If we divide each of our matrices into four sub-matrices, each of dimension N
2 ×

N
2 as follows:

A =

[
A11 A12

A21 A22

]
, B =

[
B11 B12

B21 B22

]
We find that we can compute the result matrix, C, as:[

C11 C12

C21 C22

]
=

[
A11×B11 +A12×B21 A11×B12 +A12×B22

A21×B11 +A22×B21 A21×B12 +A22×B22

]
This blocked computation is equivalent to the elementary matrix-multiplication computation and

involves 8 submatrix multiplications of size N
2 . It has total cost 8 · (

N
2 )

3
= N3.

Elementary matrix-multiplication is highly parallelizable on GPUs, demonstrating high data paral-
lelism and low divergence, and existing multiplication kernels achieve high memory throughput and
use almost all of the GPU’s available compute. However, for large matrices, the GPU’s compute
and memory-throughput capacity are quickly exceeded due to the aforementioned cubic cost. The
only way to overcome this is with a fundamentally more efficient algorithm.

2.2 The Strassen Algorithm

The key observation of the Strassen algorithm is that we can compute intermediate terms:

1



M1 = (A11 +A22)×(B11 +B22);

M2 = (A21 +A22)×B11;

M3 = A11×(B12 −B22);

M4 = A22×(B21 −B11);

M5 = (A11 +A12)×B22;

M6 = (A21 −A11)×(B11 +B12);

M7 = (A12 −A22)×(B21 +B22),

And use these intermediate terms to compute C:[
C11 C12

C21 C22

]
=

[
M1 +M4 −M5 +M7 M3 +M5

M2 +M4 M1 −M2 +M3 +M6

]
Notice that we do one multiplication for each of seven intermediate terms, reducing the number
of submatrix multiplications from 8 to 7. We introduce more matrix-additions, but adding these
matrices has cost O(N2), which is less influential asymptotically. With this reduction of one matrix
multiplication, total cost becomes 7 · (N2 )

3 +O(n2) = 7
8N

3 +O(n2).

This alone doesn’t provide an asymptotic improvement. However, if we call the Strassen algorithm
recursively, then the total work of multiplying two N ×N matrices becomes N lg 7 ≈ N2.807, which
is an asymptotic improvement over the elementary matrix-multiplication algorithm [3].

2.3 Strassen Variants

For our project, we wanted to find a modern variant of the Strassen-Algorithm and implement it on
GPU architectures. We eventually found a paper from 2023 called “Pebbling Game And Alterna-
tive Basis For High Performance Matrix Multiplication” [4] which we pursued for its low memory
overhead.

This pebbled algorithm had only been implemented with SIMD parallelism on a CPU. We wanted
to extend this to GPUs - matrix multiplication is very computationally expensive and would ben-
efit greatly from the parallelism a GPU provides. The workload was inherently data-parallel, as
matrix multiplication is independent across rows. It was also highly local, as matrices tend to be
contiguously stored. However, it was riddled with data dependencies, making a fully parallel GPU
implementation very complex. There were also several opportunities for low-level optimizations, as
our baseline (cuBLAS) was already highly optimized.

3 Approach

3.1 Algorithm

We surveyed existing Strassen algorithm variants, and their implementations on parallel machines,
to identify a variant which had low memory overhead. As mentioned above, we eventually settled
on a pebbled variant of the Strassen algorithm [4]. The algorithm is:

2



Algorithm 1 Pebbled Strassen Algorithm

1: (A11, A12, A21, A22)← A {Partition A into four submatrices}
2: (B11, B12, B21, B22)← B {Partition B into four submatrices}
3: A22 ← A12 −A21 +A22 {Basis transformation}
4: B22 ← B12 −B21 +B22

5: temp1 ← −A11 +A22 {Bilinear phase}
6: temp2 ← −B11 +B22

7: A11 ← A11 ·B11

8: B11 ← −B12 +B22

9: temp1 ← temp1 ·B12

10: M7 ← temp1
11: B12 ← A21 +A22

12: A21 ← A21 · temp2
13: M3 ← A21

14: temp2 ← B21 +B22

15: B12 ← B12 · temp2
16: M5 ← B12

17: temp2 ← −A12 +A22

18: A12 ← A12 ·B21

19: M2 ← A12

20: A22 ← A22 ·B22

21: M4 ← A22

22: temp2 ← temp2 ·B11

23: M6 ← temp2
24: A11 ← A11 +A12

25: A21 ← A21 + temp2
26: A22 ← −A12 −A22

27: A22 ← A22 +B12

28: A22 ← A22 + temp2
29: A12 ← B12 − temp1
30: A12 ← A12 −A22 {Inverse basis transformation}
31: A21 ← −A21 +A22

32: C ←
[
A11 A12

A21 A22

]
{Combine results into matrix C}

33: return C

Of note is that this algorithm reduces the storage overhead, based on an exhaustive search which
used pebbling to maximally-reuse intermediate storage once its result wasn’t needed. Also note that
stores to M{1...7} only indicate how components of the original Strassen algorithm are computed,
not how they are actually computed or stored in our implementation.

For this project, we targeted 32-bit floats on V100 and RTX 2080 architectures. All profiling was
done on the RTX 2080 due to its availability, and all figures except 11 are for 2080 machines. We
wrote our implementation with the cuBLAS CUDA library, using the incredibly helpful work [2] of
Simon Boehm (a performance engineer at Anthropic) for benchmarking and organizational purposes.

Matrices map very well to GPU architectures. Sub-matrices can be mapped to thread blocks, with
each thread (and warp) being mapped to a smaller rectangular chunk of elements. We did not
explicitly control this mapping for the majority of our code, as our implementation used cuBLAS
(which handles the exact mapping internally). However, we did explicitly define this mapping for
our double addition kernel, which we will discuss below. Our initial implementation did not alter
the original serial algorithm, although we eventually made modifications to reduce memory overhead
and fuse operations.

3



3.2 Naive Implementation

The pebbled Strassen algorithm requires several in-place matrix multiplications, which cannot be
handled by cublasSgemm. We counteracted this by introducing an temporary variable storage,
temp3, which was used to hold results of A· = B, and following each matrix multiply with a
cudaMemcpy. For example, the line A22 ← A22 ·B22 became:

temp3 ← A22 ·B22;A22 ← temp3

Below are the GPU usage breakdown for running both a recursive and non-recursive variant, created
using nsys:

Figure 1: Naive Implementation Breakdown, Non-Recursive

Figure 2: Naive Implementation Breakdown, Recursive

From this breakdown, we can see that recursion inside our Strassen variant allows us to substitute
more multiplications for additions, increasing the relative percentage of sgeam from 4.47% to 10.67%.
We can also see that internal memory copying ([CUDA memcpy DtoD]) takes 1.49% of the GPU
runtime for non-recursive and 2.01% for recursive due to the overhead of in-place multiplication. We
used this breakdown to improve our runtime - deciding to first accelerate the additions and then
reduce mem-copies.

4



3.3 Custom Addition Kernel

The breakdown of our recursive implementation convinced us to write a custom CUDA kernel which
computes C = αA+βB+C. Implementing this computation in cuBLAS takes two calls, leading to
unnecessary data movement. We designed a custom double-addition kernel to fuse this operation.
Our kernel was parameterized in terms of four constants: TM, TN,BM,BN . Each thread computes
the result for a TN × TM subsection of C, and each block computes the result for a BN × BM
subsection of C. We set these kernel parameters with a brute-force search of the following parameter
space:

TM ∈ {1, 2, 4, 8}

TN ∈ {4, 8, 16, 32}

BM ∈ {32, 64, 128}

BN ∈ {32, 64, 128}

We recorded the wall-clock time of each configuration, and ran ncu for more in-depth information
about the compute/memory throughput and occupancy of each kernel configuration. The results of
our search are presented below:

Figure 3: Tuning Results: SM Utilization Figure 4: Tuning Results: Memory Utilization

We found that TN = 4 was optimal for all sizes. The figures above visualize all parameter combina-
tions, with values of the other three parameters (TM,BM,BN) on the x, y and z axes respectively.
We see that our kernel uniformly demonstrates extremely low compute utilization (at only 2.9%
for the best configuration), but its memory utilization ranges from < 90% to > 94% depending on
configuration. This meant we should choose a kernel with good memory utilization and performance.

We also measured performance (wall-clock time) across different matrix sizes:

5



Figure 5: Tuning Performance: N = 256 Figure 6: Tuning Performance: N = 4096

The optimal configuration was independent of problem sizes, and had low TM , TN = 4 and
BN = BM = 32. Based on our experimental results, we settled on the following configuration:
TM = 1, TN = 4, BM = 32, BN = 32.

We made a few other optimizations to our kernel, like float4 loading and intelligent memory hier-
archy utilization. These were inspired by the optimizations made by Simon Boehm in his Matrix
Multiplication Kernel article[1]

Our tuned custom double-addition kernel yielded an improvement in performance across all matrix
sizes. Below is the breakdown of the algorithm when running the new kernel:

Figure 7: Implementation with Custom Add

The runtime has decreased, and the percent of time spent doing additions on the GPU went from
10.67% to 7.21+ 1.60 = 8.81%. Our final double-add kernel was 60% faster than the equivalent two
cubLAS calls. We then turned our attention to reducing mem-copies.

6



3.4 Reduced Memory Copying

Our next improvement was to reduce the memory copying overhead. The Strassen variant we
implemented relied on the multiplication A·= B, which normally requires a cudaMemcpy. After
careful consideration and correctness testing, we removed six of the seven mem-copies by swapping
pointers and rearranging memory instead of copying. This gave a large performance improvement:

Figure 8: Implementation with Reduced Mem-copies

The DtoD mem-copies have been reduced from 2.04% to 0.97%, and this corresponded to a ≈ 1%
improvement in performance.

3.5 Dead Ends

3.5.1 Multi-Stream

Some submatrix operations can theoretically be done simultaneously, so we tried using multiple
streams to improve performance. Unfortunately, the data dependencies endemic to the pebbled
Strassen algorithm made this difficult and capped our implementation at 2 consecutive streams.
Even with 2 streams, there was minimal inter-stream overlap because of the latency to launch the
kernels and contention for GPU resources. The two volta sgemm 128x64 nn calls shown in Figure
9 occur on different streams but have minimal overlap - we only observe overlap at the end of one
stream’s kernel, when it starts releasing GPU resources. There were also issues balancing the work
between the two streams, which can be seen in Figure 9, where one stream has 64.8% of the usage
and the other has 29.7% of the usage. These factors combined meant that the performance gain
from streams wasn’t worth the overhead of creating a new stream and cuBLAS handle.

Figure 9: Multi-Stream Approach, Nsight Systems

3.5.2 Prefetching

We experimented with prefetching, but it had a negligibly negative effect on performance. We believe
this is due to our high memory throughput - we already had 94% memory throughput, and there is
simply no latency to hide.

7



3.5.3 Device Pointers

The cuBLAS APIs for matrix addition (sgeam) and matrix multiplication (sgemm) take in pointers
to constants α and β, when computing C = αA+ βB and C = αAB + βC respectively. By default,
these pointers are located on the host (CPU), limiting asynchronous launch of library routines.
Since we know the constants required for Pebbled-Strassen at compile time, we created on-device
globals and passed pointers to them. This reduced latency from host-to-device mem-copies, but
the overhead from switching pointer modes from on-host to on-device pointers was larger than the
improvement from on-device pointers.

4 Results

4.1 Summary

We implemented, optimized and extensively profiled the pebbled Strassen Algorithm. We reduced
our memory overhead through intelligent reuse and recomputation and experimented with the mem-
ory hierarchy, multiple streams, prefetching and custom kernels to boost perfomance. In the end,
we outperformed a cuBLAS baseline on matrices with dimension N ≥ 4096 on the V100 and RTX
2080 architectures. All things considered, we achieved all of our major goals.

4.2 Performance

We choose to optimize the wall-clock time our implementation took to multiply 2 matrices. We
experimented with square matrices with N ∈ {128, 256 . . . 16, 384}. We tested our implementation
by ensuring its output matched that of a cuBLAS reference, using the cuBLAS performance (aver-
aged over 50 times) as a baseline time. We then ran our implementation 50 times and recorded the
average runtime. We repeated this process for all matrix sizes and constructed runtime and speedup
graphs.

Figure 10: Performance and Speedup on RTX 2080 (GHC Cluster)

On the GHC RTX 2080s, we tested three major versions of our implementation against a cuBLAS
implementation. The first version was the basic implementation of the recursive pebbled Strassen
algorithm, the second one used a custom double addition kernel and the third one reduced the num-
ber of mem-copies. All three implementations surpass the cuBLAS baseline when N ≥ 8192, but
only the final one beats cuBLAS at N = 4096.

8



Figure 11: Performance and Speedup on V100 (PSC Cluster)

We only tested the cuBLAS baseline and final implementation (custom kernel and reduced mem-
cpys) on the PSC V100s. We believe that the spike in speedup at N = 128 and N = 256 are due
to warm up costs. That being said, our final implementation consistently outperforms the cuBLAS
baseline on N ≥ 4096 on both 2080’s and V100’s.

Overall, we performed better on larger inputs than small ones. This was expected. As discussed
earlier, the Strassen algorithm is asymptotically more efficient, as it replaces 1 of the 8 expensive
sub-matrix multiplications with 14 additions instead. At smaller sizes, this efficiency is limited
by data dependencies and data movement overhead; for example, in our profiling, multiplying two
128× 128 matrices took roughly the same amount of time as adding two matrices of the same size,
which is why we have a less-than-one speedup for small sizes. However, this overhead is overpowered
by the asymptotic advantage as the matrices scale, improving speedup.

4.3 Implementation Analysis

We effectively reduce computation time for N ≥ 4096 by taking advantage of the GPU’s high
throughput. This can be seen in Figure 12, which provides an annotated timeline-view of our final
iteration running a single matrix multiply. Nsight Systems (nsys) indicates a near-100% “utiliza-
tion” of the GPU, meaning that the GPU is always running something and communication time
between the GPU and CPU is minimal in comparison to the time it takes to execute kernels. This
can also be seen in Figure 8, as the difference between the time spent in GPU Activities and API
calls indicates minimal communication beyond copying the matrix to/from the GPU.

Figure 12: Nsight Profile of Final Iteration

sgemms: cuBLAS multiplies
Small unlabled regions in between the sgemms: sgeam, matrix-adds outlined in Section 3.1

In our current iteration, the vast majority of our implementation’s runtime comes on calling cuBLAS
functions (see 8: 85.61 + 2.09 = 87.70% on sgemm, 7.28 + 2.34 = 9.62% on sgeam). We assume that
these functions are near-optimal at computing a single matrix multiplication, so focus instead on
calling them effectively, fusing operations where possible and minimizing data movement. We tried
methods to potentially call these functions more effectively (streaming and prefetching), but this
did not provide a performance increase. We also reduced our memory overhead (via removing

9



mem-copies). This leads us to believe that our implementation is as optimized as possible without
rewriting cuBLAS.

We used Nsight Compute (ncu) for an in-depth exploration of our custom kernel, profiling memory
and SM utilization. Our custom kernel achieves a 94% memory throughput and 2.9% SM utiliza-
tion, indicating near-optimal usage of the limiting resource for matrix addition which is memory
throughput. These experimental results, combined with our extensive search of the parameter space
leads us to believe that this kernel has been improved as much as possible.

Based on our analysis of our final implementation and our experiments implementing multiple-
streams and prefetching (which yielded no or negative improvement), we believe that further im-
provement in performance would need to come from a fundamental change in algorithm choice–
building a new Strassen variant which takes into consideration the constraints and advantages of
the GPU. For example, the algorithm we implemented was designed to minimize memory overhead,
requiring only one additional N × N matrix’s worth of space (or 3

4 if we did more mem-copy’s).
However, this focus on memory overhead led to data dependencies and reduced parallelism that
limited our overall performance and the algorithm’s speedup.

4.4 Machine Target Choice

Our choice of machine target was appropriate - Matrix Multiplication is a highly parallel algorithm
and GPUs are built for highly parallel applications. The paper[4] which we got our variant from
implemented their algorithm on multi-core CPUs, but GPUs are more heavily used in industry for
large Matrix Multiplications in (primarily) Deep Learning tasks, which is why we pursued them
instead. TPUs and systolic arrays would also be appropriate for Matrix Multiplication tasks, but
were out of scope for this project.

We selected V100 GPUs because they are prevalently used in training and inference for deep learning
models, and the RTX 2080 GPU becuase it’s a high-end consumer model which is often used for
rendering graphics, either for video games or digital artists/special effects. Both of these domains
feature large matrix multiplications and could benefit from our optimizations.

10



References

[1] Simon Boehm. How to optimize a cuda matmul kernel for cublas-like performance: a worklog,
December 2022. Accessed: 2025-04-15.

[2] Simon Boehm. Sgemm cuda, December 2022. Accessed: 2025-04-27.

[3] Junjie Li, Sanjay Ranka, and Sartaj Sahni. Strassen’s matrix multiplication on gpus. Proceedings
of the International Conference on Parallel and Distributed Systems - ICPADS, pages 157–164,
12 2011.

[4] Oded Schwartz and Noa Vaknin. Pebbling game and alternative basis for high performance
matrix multiplication. SIAM Journal on Scientific Computing, 45(6):C277–C303, 2023.

11



5 Work Distribution

Task Elijah% Tanay%
Research Spike on Strassen Implementation 50 50
Strassen Reference Implementation Python 100 0
Pebbled-Strassen Reference Implementation Python 100 0
Pebbled-Strassen Baseline Implementation Cuda 80 20
Refactor timing and evaluation code 0 100
Evaluate runtime and memory overhead for baselines 50 50
Continue implementing memory overhead improvements 0 100
Explore multi-stream 20 80
Profile multi-stream, explain results 100 0
Explore prefetching 0 100
Improve with custom kernels 20 80
Programmatically tune custom kernel, visualize 80 20
Explore performance on various GPUs (2080, V100) 100 0
Profile with nsys and ncu 100 0
Generate documentation 100 0
Merge, clean code base 20 80
Graphics for Report 100 0
Report Writing 50 50
Poster 50 50

Table 1: Per-Task Work Breakdown

Elijah% Tanay%
50 50

Table 2: Overall Work Breakdown

12


	Summary
	Background
	Elementary Matrix Multiplication
	The Strassen Algorithm
	Strassen Variants

	Approach
	Algorithm
	Naive Implementation
	Custom Addition Kernel
	Reduced Memory Copying
	Dead Ends
	Multi-Stream
	Prefetching
	Device Pointers


	Results
	Summary
	Performance
	Implementation Analysis
	Machine Target Choice

	Work Distribution

